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ABSTRACT: The ensembles used in the NOAA National Centers for Environmental Prediction (NCEP) global data

assimilation and numerical weather prediction (NWP) system are underdispersed at and near the land surface, preventing

their use in ensemble-based land data assimilation. Comparison to offline (land-only) data assimilation ensemble systems

suggests that while the relevant atmospheric fields are underdispersed in NCEP’s system, this alone cannot explain

the underdispersed land component, and an additional scheme is required to explicitly account for land model uncertainty.

This study then investigates several schemes for perturbing the soil (moisture and temperature) states in NCEP’s system,

qualitatively comparing the induced ensemble spread to independent estimates of the forecast error standard deviation in

soil moisture, soil temperature, 2-m temperature, and 2-m humidity. Directly adding perturbations to the soil states, as is

commonly done in offline systems, generated unrealistic spatial patterns in the soil moisture ensemble spread. Application

of a stochastically perturbed physics tendencies scheme to the soil states is inherently limited in the amount of soil moisture

spread that it can induce. Perturbing the land model parameters, in this case vegetation fraction, generated a realistic

distribution in the ensemble spread, while also inducing perturbations in the land (soil states) and atmosphere (2-m states)

that are consistent with errors in the land–atmosphere fluxes. The parameter perturbation method is then recommended

for NCEP’s ensemble system, and it is currently being refined within the development of an ensemble-based coupled

land–atmosphere data assimilation for NCEP’s NWP system.
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1. Introduction

The atmospheric data assimilation used in the NOAA

National Centers for Environmental Prediction (NCEP) nu-

merical weather prediction (NWP) system uses forecast un-

certainty estimates that are based, in part, on an ensemble of

model forecasts. NCEP’s NWP ensemble is underdispersed (or

overly confident of the forecast skill) at and near the land

surface. This lack of ensemble spread in the land surface is

common to the ensemble systems at international NWP cen-

ters (Lavaysse et al. 2013; Leutbecher et al. 2017; Gehne et al.

2019). This is not unexpected, since none of the schemes used

to induce spread in these ensemble systems explicitly account

for land surface model uncertainty. The present study inves-

tigates different mechanisms for accounting for error in the

land model component of NCEP’s NWP model when gener-

ating the NWP ensemble used in the global data assimilation

system. Improved representation of forecast uncertainty for

the land will improve ensemble-based forecast products of

boundary layer processes (e.g., probabilistic precipitation

forecasts), as well as providing more realistic forecast error

estimates for use in ensemble-based data assimilation of land-

sensitive variables. In particular, this study is motivated by the

development of an ensemble Kalman filter (EnKF) to con-

strain the soil moisture and temperature states in NCEP’s

NWP system by assimilating 2-m atmospheric temperature

(T2m) and specific humidity (Q2m) observations.

We cannot simply extend the methods used to introduce

uncertainty in the atmospheric component of an NWP model

to the land component, since the dynamics of the land and

atmosphere are fundamentally different in ways that affect the

behavior and growth of errors in each system. The atmosphere

is chaotic and exhibits sensitive dependence on initial condi-

tions, so that an initial condition error will grow over time. This

error growth occurs more rapidly along instabilities in the at-

mospheric flow, providing information on flow-dependent

uncertainties. In contrast, the land surface is strongly forced,

in that the long-term state of an offline (land-only) model

forecast will be entirely determined by its external atmospheric

forcing. That is, over a long enough forecast length, forecasts

from the same land model forced with the same atmosphere

will eventually converge to the same state, regardless of their

initial conditions (Cosgrove et al. 2003). Land surface flows at

NWP scales are also predominantly vertical, and the land

surface models used in NWP systems simulate the land inde-

pendently at each grid cell, with no horizontal communication

between adjacent land model grid cells. Consequently, and

in contrast to an atmospheric model, a land model will not in

general grow errors through a forecast, nor will it propagate

errors horizontally. Instead, the spatial and temporal dis-

tribution of the spread in an ensemble of land model fore-

casts will much more directly reflect the perturbations (or

errors) introduced into that ensemble by the ensemble

generation scheme.

Several authors have investigated the impact on ensem-

bles of atmospheric forecasts of perturbing land parameters

and states. For short-range forecasts, Lavaysse et al. (2013),

Bouttier et al. (2016), and Gehne et al. (2019) all achieved a
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modest increase in spread in the boundary layer over land by

perturbing the land initial conditions (usually soil moisture

and temperature), and/or a selection of the land model pa-

rameters used in each ensemble member, while Lavaysse

et al. (2013) and Bouttier et al. (2016) also achieved im-

proved ensemble forecast skill. These studies all evaluated

forecasts of less than 5 days, hence they retained some im-

pact of the perturbed initial land states. At longer (seasonal-

plus) time scales, MacLeod et al. (2016), Orth et al. (2016),

and Strommen et al. (2019) achieved improved ensemble

spread in the boundary layer and improved forecast en-

semble means and/or forecast skill by perturbing selected

land parameters. MacLeod et al. (2016) also tested per-

turbing the soil states using a stochastically perturbed physics

tendencies (SPPT) scheme, but found this to be less successful

than perturbing the model parameters. There are also several

established systems that generate and maintain land surface

model forecast ensembles for use in offline ensemble-based land

data assimilation. These systems typically perturb the model

states at regular time intervals (Kumar et al. 2014; De Lannoy

andReichle 2016), and/or apply different atmospheric forcing to

each ensemble member (Kumar et al. 2014; De Lannoy and

Reichle 2016; Fox et al. 2018). In contrast to the atmospheric

ensemble forecast studies above, offline land surface model

ensemble systems usually do not perturb the model parameters,

with the exception of data assimilation systems that are being

used to updatemodel parameters (Kumar et al. 2012; Pinnington

et al. 2021). Another difference between offline land data as-

similation systems and atmospheric forecast ensembles is that

the atmospheric studies cited above all apply perturbations just

once at the start of the ensemble of forecasts, while the land data

assimilation systems (which must cycle continuously through

data assimilation updates and ensemble forecasts) usually apply

temporally varying perturbations at regular time intervals.

This study investigates the introduction of schemes to ex-

plicitly account for land model uncertainty in the ensemble

forecasts from NCEP’s NWP model, the Global Forecast

System (GFS), that are used in the global NWP data assimi-

lation system. First, the earlier assertion that the ensembles

used in NCEP’s global data assimilation system are under-

dispersive at and near the land surface is confirmed. In

section 3a, the ensemble spread in archived operational GFS

output is evaluated by comparison to target forecast uncer-

tainty estimates, derived by evaluating time series of GFS

output against independent data. Note that ‘‘forecast uncer-

tainty’’ is used here to refer to the random error in the model

forecasts, as measured by the forecast error standard deviation,

while ‘‘ensemble spread’’ refers to the ensemble standard de-

viation, itself used to infer the forecast uncertainty within an

EnKF. The spread in the key atmospheric variables that force

the land surface in the operational GFS ensemble is also ex-

amined, by comparison to the spread typically applied in off-

line land data assimilation systems. In section 3b, three

methods of introducing land model error into ensemble

forecasts are investigated, drawing from the methods ap-

plied in both offline land-only and atmospheric ensemble

systems, as appropriate. Each method is tested in a simpli-

fied version of NCEP’s NWP system over a boreal summer,

when soil–atmosphere coupling is strongest. The ensemble

spread induced by each method is compared against the target

forecast uncertainty estimates established earlier. This study

is focused on understanding how different ensemble genera-

tionmethods affect the forecast uncertainty estimates obtained

from the resulting ensembles, and in particular the land–

atmosphere error covariance terms that are central to coupled

land–atmosphere data assimilation. While there is strong evi-

dence that improved representation of land model forecast

uncertainty can improve the atmospheric ensemble means and

forecast skill (Lavaysse et al. 2013; Bouttier et al. 2016;

MacLeod et al. 2016; Orth et al. 2016; Strommen et al. 2019),

this is left for later work.

2. Background and methodology

a. The GFS/GDAS NWP modeling and data
assimilation system

NCEP’s NWP modeling and data assimilation system is the

GFS/Global Data Assimilation System (GDAS), which has

been running version 15 (GFSv15) since June 2019. At the time

of writing, GFSv15 was running operationally on a cube sphere

grid, at approximately 12-km resolution, with 64 vertical layers.

The model consists of the FV3 dynamical core (Putman and

Lin 2007), and the GFS physics package. The physics includes

the Noah land surface model (Ek et al. 2003), whichmodels the

soil moisture and temperature in four layers. The GDAS at-

mospheric data assimilation is the GSI Hybrid 4DEnVar

(Kleist et al. 2009; Kleist and Ide 2015), which is run every 6 h,

and makes use of a 70-member ensemble of GFS forecasts, at a

reduced resolution of 25 km. The land data assimilation is a

once daily update to the snow depth. The soil moisture in layers

2–4 is also nudged toward climatology every 6 h, using a 60-day

relaxation time scale.

b. Target forecast uncertainty estimates

This section describes the methods used to generate inde-

pendent estimates of forecast uncertainty in the operational

GFS system over boreal summer, for variables relevant to the

EnKF assimilation of 2-m observations. These independent

estimates will be used as the target uncertainty estimates,

against which the ensemble spread from the operational GFS

archives and each perturbation experiment will be measured.

The target estimates are each obtained by comparing time

series of archived GFS operational output to independent

observations of each variable. For both soil moisture and soil

temperature, only the first layer (0–10 cm) will be investigated,

since it is the most well observed, and is also the most strongly

coupled to the atmosphere. Summary details of the method-

ology and datasets used for each target estimate are included in

Table 1.

1) NEAR-SURFACE SOIL MOISTURE

It is extremely difficult to evaluate large-scale soil moisture

estimates (Draper et al. 2013; Gruber et al. 2020) since there is

no agreed upon ground truth against which to perform an

evaluation (Reichle et al. 2004). However, triple collocation
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can be used to estimate the error standard deviation of three

independent datasets, after accounting for differences in their

mean and variance, by assuming that all three datasets are

linearly related, and have independent and orthogonal errors

(Scipal et al. 2008). Triple collocation relies on a using multi-

year time series with stationary errors, yet the operational

GFS NWP system underwent a major upgrade to version

GFSv15 in June 2019. While GFSv15 NWP output was used

for all other target estimates, for soil moisture the GEFSv12

Reanalysis (Hamill et al. 2021, manuscript submitted to Mon.

Wea. Rev.) was used to obtain the required time series from the

latest version of theGFSmodel. GEFSv12 uses a version of the

GFSv15 model that is very similar to that use in the GFSv15

NWP system, with no major differences in the land model. The

GFS soil moisture forecast error standard deviation (or fore-

cast uncertainty) was estimated during the boreal warm season

by applying triple collocation to global gridded estimates of

surface layer soil moisture from (i) the Soil Moisture Active

Passive (SMAP) level 3 enhanced soilmoisture retrieval product

(O’Neill et al. 2020), (ii) theModern-Era Retrospective analysis

for Research and Applications, version 2 (MERRA-2) (Global

Modeling and Assimilation Office 2015), and (iii) and the

GEFSv12 model. The GFS soil moisture was used as the refer-

ence dataset (to which the other two datasets were scaled) and

the triple collocation estimates were applied to data from June–

August for 2016–19 (368 days in total). The triple collocationwas

applied as described in Draper et al. (2013), with the exception

that soil moisture anomalies were not used, since the use of only

warm-season data effectively removed the seasonal cycle.

2) NEAR-SURFACE SOIL TEMPERATURE

As with soil moisture, there is no large-scale agreed upon

ground truth against which soil temperature can be evaluated.

Its evaluation is also made difficult by the need to account for

differences in the sampling depth when comparing datasets

(Holmes et al. 2008). To the author’s knowledge, triple collo-

cation has not yet been applied to soil temperature, and was not

attempted here as it would entail considerable development

effort. Instead, approximate values of the expected forecast

uncertainty for the GFS layer 1 soil temperature have been

taken from the literature. Specifically, Holmes et al. (2012)

evaluated the surface layer soil temperature in various NWP

models, including NCEP’s GFS and the ECMWF model. By

comparison to ground-based observations from 101 Oklahoma

Mesonet sites, they estimated the mean error standard devia-

tion in the model soil temperature to be around 1.5K during

the day and 2.0K at night. These values have been used here,

and they are supported by the similar, although slightly higher,

values of 2.0K (day) and 2.5K (night) estimated by Albergel

et al. (2015) for the ECMWF model. Both studies tested their

error estimates for dependence on factors such as vegetation

and soil characteristics, soil moisture, and orography, and

found no obvious relationships.

3) 2-M TEMPERATURE AND SPECIFIC HUMIDITY

There are no global gridded subdaily observed temperature

and relative humidity datasets. Hence, for T2m and Q2m, the

target GFS forecast uncertainty estimates have been con-

structed by comparison to ERA5 (Hersbach et al. 2020) output

at daily analysis times (0000, 0600, 1200, and 1800UTC).At the

analysis times, the 2-m fields from ERA5 are the output of an

optimal interpolation analysis that merges station observations

with the model background forecasts. While the ERA5 2-m

analysis is not purely observation-based and includes model

information, particularly in poorly observed regions, it is a

well-understood and high-quality product and provides a rea-

sonable and convenient benchmark against which to evaluate

the GFS 2-m fields.

The target forecast uncertainty for the GFS 2-m variables

has been estimated by calculating the standard deviation of the

difference between archived operational GFS forecasts and

the ERA5 analyzed fields from 15 June (after the operational

upgrade to v15) to 31 August 2019. Note that, since errors in

the ERA5 2-m analyses are not accounted for, this method will

overestimate the GFS forecast uncertainty. Finally, since

forecast uncertainty in the boundary layer is expected to vary

through the diurnal cycle, to more easily understand and

present the results, the target forecast uncertainty estimates

have been converted from UTC to local time. Specifically, the

original 6-hourly snapshots at the ERA5 analysis times have

been converted to 6-h time windows centered at 0000, 0600,

1200, and 1800 local time, by calculating the local time for

each UTC input time at each longitude, and then assigning the

corresponding model fields to the appropriate 6-hourly local

time interval.

c. Ensemble perturbation experiments

In this section several experiments used to test different land

model uncertainty schemes in the GFS ensemble system are

described. A summary of these experiments is provided in

Table 2. The three land perturbation experiments were com-

pared to a control experiment, referred to as ‘‘control,’’ with no

land perturbations applied, which is intended to be represen-

tative of the current operational GFS NWP ensemble system.

All of the experiments used a simplified version of the October

2019 version of NCEP’s operational NWP system. In each

experiment, the atmospheric ensemble perturbation scheme,

and the assimilated datasets were the same as used opera-

tionally, although the atmospheric assimilation was performed

with a computationally cheaper Hybrid 3D-EnVar. A reduced

TABLE 1. Details of target estimates of forecast uncertainty for each variable.

Variable Evaluation method Datasets/references Time period

Soil moisture Triple collocation MERRA-2 and SMAP 1 Jun–31 Aug 2016–19

Soil temperature Literature Holmes et al. (2012) —

T2m, Q2m Standard deviation of differences ERA5 15 Jun–31 Aug 2019
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resolution of C192 (roughly 0.58) was used for both the deter-

ministic and ensemble forecasts, and the ensemble size was

reduced to 30 members. The soil moisture nudging was also

retained, since a test of this nudging showed it had very little

impact on the ensemble soil moisture spread. Additionally,

after each assimilation update the operational GFS ensemble is

recentered around the deterministic forecast. This recentering

was not applied in the land perturbation experiments, resulting

in a systematic difference between the mean ensemble soil

moisture and the deterministic soil moisture in the control (and

all other) experiments. This was not investigated further, since

the effect of the land perturbation schemes on the ensemble

mean is outside the scope of the current work.

The initial conditions were regridded fromNCEP’s archived

operational output on 1 July 2019, and then run forward to

14 July to allow any inconsistencies to equilibrate. The en-

sembles produced by each land model uncertainty scheme

were then compared after 1 month, on 14 August 2019. Initial

tests showed that the 1month spinup period is long enough that

the initial rapid growth in spread has slowed down, but it is not

quite sufficient for the ensemble spread to be completely spun

up (particularly for layer 4 soil moisture). Nonetheless 1 month

was selected as a compromise between computational cost and

obtaining a reasonable representation of the ensemble char-

acteristics generated by each scheme.

1) SOIL MOISTURE AND TEMPERATURE STATE

PERTURBATIONS

In the first land perturbation experiment, referred to as

‘‘state-pert,’’ randomly generated Gaussian perturbations were

directly added to themodel soilmoisture and soil temperature at

each model time step. This method is commonly applied to soil

moisture in offline land data assimilation and ensemble systems

(Kumar et al. 2014; De Lannoy and Reichle 2016); however,

here both the soil moisture and soil temperature have been

perturbed. For the state x(i)t in soil layer i, the perturbed state

x(i)
0
t is calculated by adding the perturbation r(i)t scaled by the

soil layer number:

x(i)0t 5 x(i)
t
1 r(i)

t
0:5i21. (1)

For soil temperature, the r(i)t perturbations are identical in

each layer, and are generated according to a zero-mean

Gaussian distribution. For soil moisture, which is bounded,

the standard approach is to also apply zero-mean Gaussian

perturbations and then to prevent the perturbed soil moisture

from exceeding its bounds, by simply correcting any values

outside the physical soil moisture range back to the boundary

value (Kumar et al. 2014; De Lannoy and Reichle 2016).

Consequently, as the soil moisture nears its upper or lower

bounds, the applied perturbations become biased, since they

are effectively limited in one direction (Ryu et al. 2009). Here,

for the soil moisture perturbations the standard approach has

been amended by applying a flat-top filter, which (symmetri-

cally) reduces the magnitude of the applied perturbation close

to the upper and lower boundaries (xmin and xmax, respec-

tively). For a random st, generated according to a Gaussian

distribution, the r(i)t for each layer in Eq. (1) are calculated:

r(i)
t
5 s

t
(12 jz(i)pt j) , (2)

z(i)
t
5211 2

x(i)
t
2 x(i)

min

x(i)
max

2 x(i)
min

,

where p is the flat-top parameter, set to 5 here.

In this study, for soil temperature the rt in Eq. (1) are gen-

erated using a standard deviation of 0.1K h21, while for soil

moisture the st in Eq. (2) are generated using a standard de-

viation of 0.1mmh21. Both are given a horizontal decorrela-

tion length of 1000 km, and temporal decorrelation length of

24 h. There is likely a relationship between errors in soil

moisture and errors in soil temperatures; however, given that

this relationship is not well understood, and likely not consis-

tent in time, independent random fields have been used to

generate the soil moisture and soil temperature perturbations,

rather than imposing a correlation between the two.

2) SPPT OF SOIL STATES

A significant disadvantage of the state-pert approach is that

it requires an assumed error correlation between the applied

soil moisture and soil temperature perturbations (or assumed

independence, as was done here). Yet, as noted above, the

relationship between soil moisture and temperature (and

presumably their errors) is not well understood, and is likely

variable. The second land perturbation experiment, referred to

as ‘‘soil-SPPT,’’ addresses this by extending the GFS’s atmo-

spheric SPPT scheme (Zhou et al. 2021, manuscript submitted

toWea. Forecasting) to also apply to the soil states, so that the

model itself is used to determine the relative perturbations

applied to the soil moisture and temperature. SPPT applies

randomly generated perturbations rt to the model state (Xt)

tendencies at the end of each model time step, by setting the

perturbed model state (X 0
t ) to

X 0
t 5X

t21
1 (11 r

t
)(X

t
2X

t21
) . (3)

TABLE 2. Details of soil moisture (SM) and soil temperature (ST) perturbation ensemble experiments.

Experiment Name Land perturbation method Perturbation parameters

Control None —

State-pert SM and ST perturbed ST: rt ; N(0, 0.1) K h21 [Eq. (1)]

SM: st ; N(0, 0.1) mm h21 [Eq. (2)]

Soil-SPPT SM and ST physics tendencies perturbed st ; N(0, 1.0) [Eq. (4)]

Param-pert Vegetation fraction perturbed st ; N(0, 0.1) [Eq. (2)]
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In these experiments, Xt contains the soil moisture and soil

temperature in each model layer, and the rt are randomly

generated perturbations. Initial experiments using a Gaussian

perturbation for rt often resulted in model instabilities when

(11 rt) in Eq. (3) was negative. Following the approach used in

the GFS atmospheric SPPT scheme, this sign reversal was

avoided by limiting rt in Eq. (3) to be between 21 and 1, by

setting it to

r
t
5

2

11 est
2 1, (4)

where st is a randomly generated zero-mean Gaussian pertur-

bation. Here, st was given a standard deviation of 1.0, and the

same horizontal and temporal scales as for the state-pert ex-

periment. The resulting rt distribution has a standard deviation

of 0.4. Finally, the land SPPT perturbations were generated

independently from the atmospheric SPPT perturbation.

While using the same perturbation fields for both would in

theory produce consistent land and atmosphere perturba-

tions, the atmospheric SPPT scheme is tapered toward the

surface to avoid generating boundary layer instabilities, re-

ducing the potential value of this consistency.

3) PERTURBING MODEL PARAMETERS

The third land perturbation experiment, referred to as

‘‘param-pert,’’ is also designed to apply perturbations that are

consistent across model variables, in this case by perturbing the

model parameters used in the parameterization of the fluxes

between the soil states and the overlying atmosphere. To

demonstrate this approach the vegetation fraction was per-

turbed, since in experiments perturbing several GFS land

model parameters Gehne et al. (2019) found vegetation frac-

tion to have the greatest impact on short-range forecasts. The

param-pert approach has the advantage over soil-SPPT of

creating consistent perturbations across more than just the soil

states, and in particular it has the potential to apply consistent

perturbations to both the land and atmospheric components of

each ensemble member. Since vegetation fraction is bounded

between 0 and 1, the perturbations are applied using the flat-

top filter, analogous to Eqs. (1) and (2), with st in the latter

equation again assumed to be zero-mean Gaussian, with a

standard deviation 0.1, and the same horizontal and temporal

scales as the state-pert experiment.

3. Results

a. Operational GFS ensemble spread

1) LAND SURFACE STATE VARIABLES

Figures comparing the target estimates of forecast uncer-

tainty from Table 1 to ensemble estimates from NCEP’s ar-

chived operational GFS NWP output are shown in Figs. 1–4.

The GFS ensembles are the 6-h forecasts that the GDAS uses

to estimate forecast uncertainty. Global maps are plotted for

all variables, except soil temperature for which boxplots are

shown, since the target estimates are approximate and do not

include any spatial information. A preliminary investigation of

the archived GFS output showed little subseasonal variation in

the large-scale characteristics of the ensemble spread that are

investigated here, hence the various ensemble-based forecast

uncertainty estimates are calculated from ensemble output

on a single day. The forecast uncertainty maps are also sum-

marized in Figs. 5 and 6, by plotting the forecast uncertainty

estimates binned by the GFS Soil Wetness Index (SWI), where

FIG. 1. Forecast uncertainty for the GFS layer 1 soil moisture (SM1) over boreal summer, estimated from (a) the

target error standard deviation (triple collocation) and (b) the GFS NWP operational ensemble spread at

0000 UTC 15 Jul 2019. In (a) data gaps indicate unavailability of SMAP, usually due to dense vegetation.

FIG. 2. Forecast uncertainty for the GFS layer 1 soil temperature

(ST1) for 6-h time windows centered at 0000 and 1200 local time,

estimated from the target error standard deviation (Holmes et al.

2012) and the GFS NWP operational ensemble spread on 15 Jul

2019. Crosses indicate the spatial mean, and boxplots for the en-

semble estimate show the median and interquartile range.
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the latter is defined as the soil moisture scaled between 0

(driest possible) and 1 (wettest possible) at each grid cell. To

prepare Figs. 5 and 6 from global maps of forecast uncer-

tainty, each grid cell is assigned to the appropriate SWI bin,

and the root-mean-square of the forecast uncertainty is then

plotted for each SWI bin, together with box plots, showing the

interquartile range within each bin. The interquartile range is

generally fairly narrow (compared to the variation of the

mean with variation in SWI), confirming the appropriateness

of plotting these fields against SWI. The exception is for the

2-m variables during the day, when the interquartile range is

quite large for the operational GFS (Figs. 6c,d), and the mean

results here should be interpreted with some caution. Note that

these plots are not intended to imply a direct dependence be-

tween SWI and the forecast uncertainty. Instead they are intro-

duced as a convenientmethod to summarize themaps inFigs. 1–4.

The SWI in these plots is best interpreted as a proxy for the

surface conditions, with dry values indicating dry, and warm and

generally low vegetation conditions, and wet values generally

indicating wet and cool and generally high vegetation conditions.

Starting with soil moisture, Figs. 1 and 5 demonstrate that

the GFS ensemble underestimates the forecast soil moisture

error, giving a mean uncertainty from the ensemble of

0.011m3m23, compared to 0.025m3m23 for the triple collo-

cation estimate. However, in terms of regions of relatively

large and small forecast uncertainty, the spatial patterns in

the ensemble uncertainty appear to be reasonable, and Fig. 1

shows similar regions with larger uncertainty (tropics, central

United States, northeast Asia, and regions of Australia) in the

ensemble and target estimates. Likewise, in Fig. 5 both show

the same pattern of relatively larger uncertainty in the center

of the SWI distribution, and reduced values toward the wet

and dry boundaries (more so toward the dry end). For soil

temperature, Fig. 2 again shows that the ensemble is under-

dispersed, with a global mean forecast uncertainty of 0.36K for

the 6-h window centered on 0000 local time, and 0.47K for the

window centered on 1200 local time, compared to 1.5 and 2.0K

for the literature estimates. In both cases the interquartile range

for theGFSmean is narrow,with upper limits still very far below

the target literature values, indicating little spatial spread in the

soil temperature ensemble standard deviation.

For T2m and Q2m, the GFS ensemble is again under-

dispersed, as shown in Figs. 3 and 4. For T2m, the GFS mean

ensemble spread over land is 0.58K at 0000 and 0.92K at 1200

local time, much less than the target values of 1.43 and 1.58K,

respectively. Likewise, for Q2m, the GFS ensemble mean

spread is 0.51 g kg21 at 0000 local time and 0.59 g kg21 at 1200

local time, compared to 1.00 and 1.10 g kg21 for the target es-

timates. Despite the low bias, the spatial patterns in the en-

semble spread agree qualitatively with those of the target

estimates. For T2m, in Figs. 3a and 3b and 6a the night time

forecast uncertainty is highest in dryer, warmer and less veg-

etated regions (Saharan and southernAfrica, Australia, central

Asia, the western United States and Chile) for both the target

and Unified Forecast System (UFS) estimates. In Figs. 3c and

3d and 6c the daytime T2m forecast uncertainties for both es-

timates are highest in wetter, more vegetated regions (the

tropics, south Asia, high latitudes). Similar patterns are ob-

served for Q2m during the day (Figs. 4c,d and 6c). During the

night, the Q2m forecast uncertainties (Figs. 4a,b) differ from

those for T2m (Figs. 3a,b), with the target estimate showing a

region of relatively large uncertainty loosely aligned with the

intertropical convergence zone, which is less evident in the

GFS ensemble estimate.

FIG. 3. Forecast uncertainty for GFS T2m over boreal summer for 6 h time windows centered at (top) 0000 and

(bottom) 1200 local time estimated by the (left) target error standard deviation (from comparison to ERA5) and

(right) GFS NWP operational ensemble spread on 15 Jul 2019.
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2) LAND SURFACE FORCING VARIABLES

Having confirmed that the operational GFS ensemble is

underdispersed at and near the land surface, the role of the

spread in the atmospheric fields that force the land surface is

now investigated. This is done by comparison to the atmo-

spheric ensembles typically applied in offline land data as-

similation systems, using NASA’s SMAP Level 4 (De Lannoy

and Reichle 2016; Reichle et al. 2017) land data assimilation

system as a representative offline system [NASA’s Land

Information System (Kumar et al. 2014) uses very similar at-

mospheric perturbations to SMAP Level 4]. These offline

systems are based on ensembles of offline (land-only) land

model forecasts. A single set of atmospheric fields is used to

force all ensemble members, with randomly generated per-

turbations added to select fields in each ensemble member.

For the SMAP Level 4 system, precipitation and down-

welling surface shortwave radiation are both multiplicatively

perturbed (with lognormally distributed perturbations, of

standard deviations of 0.5 and 0.3, respectively), and the

downwelling surface longwave radiation is additively per-

turbed (with normally distributed perturbations of standard

deviation 20Wm22).

Figure 7 compares the ensemble spread in the atmospheric

forcing from the operational GFS ensemble to that from the

SMAP Level 4 system. The SMAP Level 4 estimate was

constructed by calculating the ensemble standard deviation

that would result from applying the above listed perturba-

tions to a single (arbitrarily chosen) member of the opera-

tional GFS ensemble. There are clear differences in both the

spatial patterns and magnitude of the ensemble spread from

the coupled and offline systems (here ‘‘coupled’’ refers to the

land model being coupled to the atmosphere). Since the land

ensemble members within the coupled ensemble are each

forced by a different realization of the atmosphere (rather

than a randomly perturbed copy of a single realization, as

occurs offline), the ensemble can account for uncertainty in

the location of precipitation events. Hence, it has a larger

area on nonnegligible ensemble spread in precipitation (more

than 2.25 times) than the offline ensemble (Figs. 7a,b).

Similarly, for the radiation terms, spatial variation in the

FIG. 4. Forecast uncertainty for GFS Q2m over boreal summer for 6-h time windows centered at (top) 0000 and

(bottom) 1200 local time estimated by the (left) target error standard deviation (from comparison to ERA5) and

(right) GFS NWP operational ensemble spread on 15 Jul 2019.

FIG. 5. Forecast uncertainty in GFS SM1 from the target esti-

mate (triple collocation) and the GFS NWP operational ensemble

spread on 15 Jul 2019 (both from data plotted in Fig. 1), binned by

soil wetness index (SWI). Plotted circles show the mean for each

bin, and the boxplots show the interquartile range.
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coupled estimates reflects uncertainty in the forecast cloudi-

ness (Figs. 7d,f), producing more realistic spatial patterns

than the offline ensemble, which is globally uniform for

longwave (Fig. 7c) and has the greatest shortwave uncer-

tainty (Fig. 7e) where shortwave is itself greatest (i.e., un-

der clear-sky conditions, which can generally be forecast

more confidently than cloudy skies). However, while the

magnitude of the ensemble spread in the precipitation is

similar (the mean across regions with nonnegligible pre-

cipitation spread is 3.2 mm day21 coupled, 3.9 mm day21

offline), the spread in the radiation fields in the coupled

ensemble is well below the offline estimates. For shortwave,

the mean ensemble spread in regions of nonnegligible

spread was just 50Wm22 for the coupled ensemble, com-

pared to 116Wm22 for the offline ensemble. For longwave,

the difference is less marked, with a mean of 8.4Wm22 for

the coupled ensemble, compared to 20Wm22 for the offline

ensemble. While the underdispersed spread in radiation in

the GFS ensemble will contribute to the underdispersed

land surface spread, the developers of offline land ensemble

systems have found that perturbing the forcing alone is

insufficient to achieve reasonable ensemble spread in the

land. Hence, increasing the radiation spread in the GFS

ensemble alone is unlikely to address the underdispersal of

the land component.

b. Land perturbation experiments

Figures 8–10 show the forecast uncertainty estimated from

the ensemble spread for each of the experiments listed in

Table 2, compared to the target forecast uncertainty estimates

in Table 1. These experiments have not been tuned to optimize

themagnitude of the induced ensemble spread, and the focus is

on investigating how the model responds to the different per-

turbation approaches, in terms of aspects such as spatial dis-

tribution in the induced spread, and the impact on ensemble

correlations. Starting with soil moisture in Fig. 8, note that the

distribution of spread in the control experiment is very similar

to that from the archived operational output in Fig. 5, con-

firming that the experimental setup for the control (and other

experiments) is representative of the operational GFS’s en-

semble spread in the land. Also, in Fig. 8, the state-pert ex-

periment has the greatest increase in spread, and also has a

distribution that is quite different from the control and target

estimates, showing a narrow maxima at a SWI around 0.2,

rather than the broader maxima between SWI of 0.2 and 0.7.

Examination of the model response to the applied perturbations

FIG. 6. Forecast uncertainty in GFS (left) T2m and (right) Q2m, for 6-h time windows centered at (top) 0000 and

(bottom) 1200 local time from the target estimates (comparison to ERA5) and from the GFS NWP operational

ensemble spread on 15 Jul 2019 (both from data plotted in Figs. 3 and 4), binned by SWI. Plotted circles show the

mean for each bin, and boxplots show the interquartile range.
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shows that this is caused by the model retaining the applied

perturbations for longer under drier conditions, due to the

reduced evaporation rates. Over time, as the (temporally cor-

related) perturbations are added to the model states, they ac-

cumulate more rapidly under drier conditions, enhancing the

ensemble spread in those regions. There is an additional ex-

periment plotted in Fig. 8, labeled state-pert-noflattop, which is

the same as the state-pert experiment, but without the flat-top

filter [Eq. (2)] applied. In this experiment, the overestimation

of the ensemble spread is even worse in dry regions (the in-

troduction of the flat-top filter was an attempt to fix this issue,

but it made only a slight improvement).

The remaining two experiments in Fig. 8, soil-SPPT and

param-pert, added less spread than the soil-pert experiment,

while maintaining the pattern of the target estimate of rel-

atively large spread in the center of the SWI distribution.

The soil-SPPT experiment increased the mean spread only

slightly, to a mean of 0.013 m3m23, compared to a mean of

0.010 m3m23 for the control experiment. While the magni-

tude of the spread has not been tuned in these experiments,

and is not being explicitly evaluated, for the soil-SPPT ex-

periment additional tests attempting to increase the soil

moisture spread were unsuccessful (while for param-pert, it

was possible to increase the spread by increasing the mag-

nitude of the applied perturbations). For soil-SPPT, dou-

bling the standard deviation of the distribution for the s

parameter in Eq. (4) increased the mean ensemble spread by

just 0.001 m3m23. The soil moisture spread induced by soil-

SPPT is limited by two factors. First, the need to restrict (11
rt) in Eq. (3) to be nonnegative, combined with the use of

symmetric perturbations, limits the applied (1 1 rt) to be-

tween 0 and 2, effectively limiting the maximum standard

deviation of the applied perturbations. Second, the change

in soil moisture over a time step is itself very small, unless

precipitation has recently occurred. Combined, the above

two factors limit the magnitude of perturbations that can be

applied when applying SPPT to soil moisture, since both

terms in Eq. (3) are small. This is an inherent limitation of

the method itself, rather than in the tuning of the experi-

ment presented here.

FIG. 7. Example of the ensemble spread in selected land forcing fluxes for (top) precipitation (prec.), (middle)

downwelling longwave (LWd), and (bottom) downwelling shortwave (SWd) for (left) typical values used in an

offline land data assimilation systems and (right) the land forecast coupled to the atmosphere in the operational

GFS NWP ensemble. All plots are for 16 Aug 2019 for the 4-h forecast valid at 0400 UTC.
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Figure 9 shows boxplots of the global gridded ensemble

spread in soil temperature for each experiment, compared to

the literature estimates of global mean forecast uncertainty.

Each experiment has increased the spread, although in most

instances it remains well below the target literature estimate,

particularly during the day.

The results are similar for the 2-m variables in Fig. 10, in that

the ensemble spread was increased in all of the experiments,

while remaining well below the target estimates. This was the

case even for the state-pert experiment, which added a rela-

tively large spread to the soil moisture and temperature (par-

ticularly under dry conditions). This is not unexpected, as the

forecast errors in the 2-m variables are not exclusively due to

errors in the land surface processes. For T2m, all three per-

turbation experiments added a similar amount of spread during

the day (with some deviation in the exact distributions), while

during the night the relative amount of spread added by each

experiment follows the same pattern for the relative amount of

spread added to soil temperature in Fig. 9 (in order of in-

creasing spread: param-pert, soil-SPPT, state-pert). Note,

however, that the parameter perturbation experiment has

barely changed the T2m spread at night. For Q2m, the per-

turbation experiments all added a similar small amount of

spread, while still remaining far below the target estimate.

The exception is the vegetation parameter perturbation

experiment, for which the additional Q2m spread is gradu-

ally reduced as SWI increases, while during the day the

amount of spread is actually decreased, compared to the

control experiment.

This reduction in spread for the parameter perturbation

experiment is curious, and is associated with the control ex-

periments having relatively high Q2m (and T2m) ensemble

spread in several small regions, all characterized by densely

vegetated tropics. These regions of elevated spread are seen in

all of the other experiments, except param-pert, and are also

evident in the operational ensemble. Figure 11 plots T2m and

Q2m versus precipitation for each ensemble member for the

param-pert and control experiments at a grid cell in one of

these regions. The higher ensemble spread in the control ex-

periment is associated with a larger difference in T2m and

Q2m between the precipitating and nonprecipitating ensemble

members than occurs in the param-pert experiment. The

nonprecipitating members are warmer and drier in the control

experiments (mean T2m of 303.1, mean Q2m of 14.0 g kg21)

than those in the param-pert experiment (means 301.2K,

16.2 g kg21). The ensemble members with precipitation then

have higher precipitation amounts in the control (mean

20.5mm day21) than in the param-pert (mean: 7.1mm day21),

leading to cooler and wetter T2m and Q2m (means: 299.4K,

19.7 k kg21) than in param-pert (300.5K, 16.6 g kg21). Across

this region the param-pert experiment tends to be cooler in the

absence of precipitation, and the hypothesis is that the cooler

conditions lead to reduced precipitation amounts, giving a

lesser response to that precipitation, reducing the ensemble

spread between the precipitating and nonprecipitation en-

semble members. Regardless of the exact mechanism, this

highlights that the nonlinear response of land models to ap-

plied perturbations can alter the ensemble mean behavior,

which can then have significant follow-on effects.

Finally, Figs. 12 and 13 show the ensemble correlations be-

tween the soil states (moisture and temperature), and each of

T2m and Q2m, for each of the experiments, again binned by

SWI. A few interesting features stand out from these figures.

Starting with the control experiment, the patterns of each

correlation term appear generally reasonable, with the ex-

ception of the positive nighttime soil moisture–T2m correla-

tion under dry conditions, which is the opposite sign to

observed and modeled estimates of the correlation (Dai et al.

1999; Drusch et al. 2009). This is present in all of the experi-

ments as well as in the archived operational ensembles (and so

it is not associated with a particular perturbation approach),

FIG. 8. Forecast uncertainty in the GFS layer 1 soil moisture

(SM1) from the target error standard deviation estimate (triple

collocation) and from the ensemble spread in each of the land

perturbation experiments at 0000 UTC 14 Aug 2019, binned by

SWI. Plotted circles indicate the mean for each bin.

FIG. 9. Forecast uncertainty in GFS layer 1 soil temperature

(ST1) from the target error standard deviation estimate (Holmes

et al. 2012) and from the ensemble spread in each of the land

perturbation experiments on 14 Aug 2019 for the 6-h time windows

centered on 0000 and 1200 local time. Boxplots for the ensemble

spread show the median and interquartile range.

2098 JOURNAL OF HYDROMETEOROLOGY VOLUME 22

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 07/20/22 05:12 PM UTC



and indicates an error in the forecast model. This model error

will be problematic when performing assimilation updates to the

model soil moisture (since an assimilation update improving the

soil moisture will generate a change in the T2m of the incorrect

sign). The cause of this model error is unknown, and is currently

being investigated by NCEP’s model development team.

Next, looking at the perturbation experiments, there is a

clear distinction between the two experiments that add per-

turbations directly to the soil states (state-pert and soil-SPPT),

and the parameter perturbation experiment, which perturbed

the state variables indirectly by perturbing the calculated water

and energy fluxes. The state-pert experiment generally had the

greatest change in the magnitude of the ensemble correlations,

particularly for drier soil moisture conditions, when it also in-

duced the largest ensemble spread in soil moisture. However,

the magnitude of the ensemble correlations is sometimes in-

creased and sometimes decreased by the state-pert experi-

ment. In a coupled system, like a land–atmosphere model,

this is not an unexpected response to applying perturbations to

one component of that system. For example, land–atmosphere

interactions, such as are quantified by the correlations be-

tween the soil states and 2-m variables plotted here, consist of

both the atmosphere influencing the land, and the land influencing

the atmosphere, with the balance between these two varying

according to the local conditions (Seneviratne et al. 2010; Dong

and Crow 2019). Under dry soil conditions, the soil moisture

available for evaporation will exert a strong control over the

partition of incoming surface radiation into latent and sensible

heating, and so will control the T2m and Q2m.When the state-

pert experiment then adds perturbations to the soil moisture, in

dry conditions this is translated into perturbations in the T2m

and Q2m, enhancing the preexisting soil moisture–2-m corre-

lation in Figs. 12a and 12c. On the other hand, in conditions

where the correlation between the land and atmosphere is

driven by atmospheric processes controlling the soil states,

adding perturbations to the soil states will reduce the 2-m

atmosphere–soil state correlations, by adding noise to the soil

states used in the correlation calculation. The reduced daytime

correlations between the soil temperature and T2m in Figs. 13a

and 13b suggest that this occurred in these locations.

The soil-SPPT experiment also added perturbations directly

to the soil states, resulting in a similar response to state-pert in

the ensemble correlations for soil temperature. By contrast,

the soil-SPPT induced little change in the soil moisture cor-

relations, likely because it induced such a small change in the

soil moisture itself.

FIG. 10. Forecast uncertainty in GFS (left) T2m and (right) Q2m for the 6-h time windows centered at (top) 0000

and (bottom) 1200 local time from the target error standard deviation estimate (comparison to ERA5) and from the

ensemble spread in each of the land perturbation experiments on 14 Aug 2019, binned by SWI. Plotted circles show

the mean for each bin.
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In contrast to the other experiments, the parameter pertur-

bation experiment generally increased the magnitude of the

preexisting land–atmosphere correlations in Figs. 12 and 13.

Again this is expected, since perturbing the parameters induces

perturbations in the land–atmosphere fluxes that define the

land–atmosphere coupling. Perturbing these fluxes generates

consistent perturbations in the land and atmosphere that em-

phasize the preexisting land–atmosphere coupling, regardless

of which component is driving the land–atmosphere controls in

that instance.

4. Discussion

This study examined the ensemble spread in the soil mois-

ture and temperature and the atmospheric 2-m temperature

and humidity in NCEP’s operational GFS NWP ensemble

system. As is the case in other NWP ensemble systems, the

GFS ensemble is underdispersed at and near the land surface.

This lack of spread prevents the use of land data assimilation

based on the GFS ensemble estimates of forecast uncertainty.

While the ensemble-based forecast uncertainty estimates

could be inflated to obtain more realistic estimates, in many

regions the ensemble cross covariances between the soil and

2-m variables are noisy (not shown), suggesting that the

forecast spread is small enough to induce sampling errors in

the cross covariances. The ensemble spread in the surface

radiation fields are likely also underestimated over land, and

could be improved by enhancing the uncertainty of cloud

processes in the ensemble members. However, based on the

experience of offline land data assimilation systems, en-

hancing the forcing spread alone would likely be insufficient

to obtain a more realistic spread in the land states. Hence a

series of experiments was conducted to test different methods

of explicitly introducing perturbations to account for the

uncertainty in the soil moisture and temperature forecasts in

each ensemble member.

The results of these experiments highlighted the ways in

which the dynamics of the land, and hence land models, differ

from those of the atmosphere. As noted earlier, the land is

not a chaotic system and the land surface schemes used in

atmospheric models do not simulate horizontal flow between

grid cells. Consequently, land models do not have dramatic

error growth along instabilities, or horizontal communication

of forecast errors between neighboring grid cells. Instead, the

spatial patterns of forecast uncertainty in an ensemble of

forecasts will be largely determined by the spatial patterns of

perturbations applied to the ensemble, combined with the lo-

calized persistence of these perturbations in the model. This

was clearly demonstrated by the state-pert experiment, in

which soil moisture and soil temperature perturbations were

applied globally, assuming the same Gaussian perturbation

distribution everywhere. At the regional level, this resulted in

soil moisture ensemble spread that reflects the local persis-

tence of soil moisture perturbations, resulting in larger values

in drier regions, which does not agree with the target soil

moisture forecast uncertainty estimates (Fig. 8).

This result raises interesting questions about the role of er-

rors of the day in land data assimilation. If forecast uncertainty

is not driven by chaotic processes, and instead reflects localized

errors in the modeled physical processes and the model

memory of those errors, then the forecast errors at any given

point in space and time will depend strongly on the local con-

ditions. One might then be tempted to approximate the errors

using a climatological forecast uncertainty estimate. However,

atmospheric forcing is a major source of land model forecast

error, and so superimposed on the climatological error co-

variance field are forecast errors associated with transient

atmospheric events, most notably precipitation. The latter

cannot be reasonably neglected, since errors in these events

will induce large errors in the forecast land surface state,

while also potentially shifting the land surface regime (say

to a wetter state after precipitation), which can dramatically

affect the error covariances between pairs of variables (say,

between soil moisture and T2m).

Following the state-pert experiment, the soil-SPPT experi-

ment was an attempt to apply soil moisture and temperature

perturbations with a more realistic spatial pattern, by making

use of the model tendencies to determine the magnitude of the

perturbations applied to the soil states. However, the results

showed that when applying SPPT to the soil states, the amount

FIG. 11. Precipitation vs (a) T2m and (b) Q2m for each ensemble member at a grid cell in the Amazon (lon5 294.9,

lat 5 3.2) at 1800 UTC (;1400 local time) 10 Aug for the control and param-pert experiments.
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of soil moisture spread that could be induced is limited, due to

the need to maintain perturbations that are both symmetric

about unity and positive, and due to the typically very small

change in soil moisture in an individual time step. Hence, the

SPPT approach is not recommended for soil states. The third

experiment, param-pert, was also designed to make use of the

model physics to introduce consistent perturbations across a

range of model variables, and this experiment was more suc-

cessful. Perturbing the model parameters (in this case, vege-

tation fraction) led to a distribution in the soil moisture

ensemble spread that agreed reasonably well with that from

the target estimate in Fig. 8. More importantly, perturbing the

parameters effectively perturbs the fluxes across the land–

atmosphere interface, resulting in land and atmosphere per-

turbations representative of errors in those fluxes. Hence, the

preexisting land–atmosphere ensemble error correlations from

the control experiment were enhanced in the param-pert ex-

periment. By contrast, both the state-pert and soil-SPPT ex-

periments applied perturbations to only the land states within

the ensemble, which resulted in enhanced land–atmosphere

error correlations in locations where the land states were

driving the land–atmosphere fluxes (i.e., moisture-limited lo-

cations during the day), and reduced land–atmosphere error

correlations in locations where the atmospheric states were

driving the land–atmosphere fluxes (soil temperature and T2m

during the night). This is an important result, since the land–

atmosphere error covariances are central to coupled land–

atmosphere data assimilation. Within the context of an EnKF

assimilation designed to constrain the model soil states by as-

similating 2-m observations, applying a perturbation approach

that only perturbs the soil states is expected to over/undercorrect

the soil states where the ensemble has over/underestimated the

strength of the land–atmosphere error correlations, depend-

ing on the whether the land–atmosphere interactions are lo-

cally controlled by the land or the atmosphere. The more

representative land–atmosphere error covariances obtained

from the parameter perturbation approach are expected

to yield improved ensemble-based data assimilation results;

however, data assimilation experiments are required to confirm

this result.

The objective of this study was to investigate how different

methods of accounting for landmodel error affected ensemble-

based estimates of the forecast error covariances that are central

to coupled land–atmosphere data assimilation. Investigation of

how the different land model uncertainty methods may have

affected the ensemble mean states and forecast skill is left for

later work. However, Fig. 11 highlighted that the nonlinear

response of land models to symmetrically applied perturba-

tions can affect the ensemble mean states, and also down-

stream model processes. If the applied ensemble perturbations

FIG. 12. Ensemble correlation between layer 1 soil moisture (SM1), and each of (left) T2m and (right) Q2m for

the 6-h time windows centered at (top) 0000 and (bottom) 1200 local time binned by SWI. Plotted circles show the

mean for each bin.
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reflect the true model uncertainty (say, by representing subgrid-

scale heterogeneity), we would expect the perturbations to im-

prove the ensemble forecast mean and skill, as occurred in

MacLeod et al. (2016), Orth et al. (2016), and Strommen et al.

(2019). However, as noted by Strommen et al. (2019), if the

perturbation scheme significantly adjusts the mean land states,

this may require a time-consuming model retuning to obtain

these forecast benefits, since NWP boundary layer schemes tend

to be heavily tuned to their current (deterministic) land model

climatology.

5. Conclusions and recommendations

A number of conclusions and recommendations can be

drawn from this study, starting with those for offline land data

assimilation systems. First, the standard method of adding soil

moisture perturbations to each ensemble member at regular

time intervals produces unrealistic spatial patterns in the

ensemble-based forecast soil moisture uncertainty. Specifically

the forecast uncertainty is overestimated (relative to other

locations) in dry regions. At a minimum, applying a flat-top

filter to the soil moisture perturbations is recommended. By

reducing the magnitude of the perturbations close to the soil

moisture limits, the flat-top filter ameliorates, but does not

solve, the overestimated forecast soil moisture uncertainty in

dry regions. While not investigated here, the flat-top filter is

also expected to improve the tendency for offline land model

ensembles to be biased wet in dry conditions, compared to a

nonperturbed simulation. Second, now that most atmospheric

reanalysis and NWP systems are ensemble-based, offline land

data assimilation systems would benefit from using these en-

sembles as atmospheric forcing (currently, only the Data

Assimilation Research Testbed uses an ensemble of atmo-

spheric realizations; Fox et al. 2018). In addition to providing

atmospheric forcing with internal consistency between vari-

ables in each ensemble member, using an ensemble of atmo-

spheric forecasts will providemore accurate spatial variation in

the model forcing uncertainty, through better representing the

impact of cloudiness uncertainty on radiation uncertainty, and

the positional uncertainty in clouds and precipitation.

In terms of coupled land–atmosphere data assimilation,

as well as other coupled data assimilation systems (e.g.,

ocean/atmosphere), ensemble perturbation approaches that

directly target the fluxes between the coupled components are

recommended. This approach creates physically consistent

perturbations in each component (in this case the land and the

atmosphere), leading to error cross covariance that reflect the

coupling generated by the perturbed fluxes. By contrast, per-

turbation methods that target only one component will lead to

overestimated ensemble error covariances where that component

FIG. 13. Ensemble correlation between layer 1 soil temperature (ST1), and each of (left) T2m and (right)Q2m for

the 6-h time windows centered at (top) 0000 and (bottom) 1200 local time, binned by SWI. Plotted circles show the

mean for each bin.
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is driving the coupling between the components, and under-

estimated covariances where the other component is driving the

coupling.

For NCEP’s global NWP system specifically, based on these

results the parameter perturbation approach will be applied to

enhance the ensemble spread at and near the land, as the first

step to developing an EnKF-based coupled land–atmosphere

data assimilation system. This approach both satisfies the

above requirement of directly perturbing the land–atmosphere

fluxes and leads to a realistic distribution of the forecast un-

certainties. Additional testing is now being carried out to refine

the parameter perturbation approach to also perturb addi-

tional parameters, and to test the impact throughout the year.

For the EnKF assimilation of 2-m variables, if perturbing the

model parameters cannot induce sufficient ensemble spread to

approximate the target error estimates in Table 1, the addi-

tional forecast error could be applied within the data assimi-

lation using the Hybrid 4DEnVar approach already used for

atmospheric data assimilation.Due to the incorrect nighttime soil

moisture–T2m relationship observed in the GFS ensembles, ini-

tial development of the EnKF will focus on updating soil tem-

perature from T2m, until this modeling issue is resolved. Finally,

the code used to generate the state and parameter perturbations

are available through the UFS Community (UFS Community

Weather, and Stochastic Physics) GitHub repositories.
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